Quiz for Week5-6

1. (20points) Matrix computation:
(1) (5points)

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]^{n}
$$

(2) (5points)

$$
\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]^{n}
$$

(3) (10points) Give the inverse and transpose

$$
\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & -1 & 2 \\
3 & 3 & 3
\end{array}\right]
$$

2. (10points)
(1) How many 3 by 3 permutation matices are there? Please give them all. (Identity matrix included)
(2) Find a 4 by 4 permutation matrix P with $P^{5}=P$
3. (10points) A is a square matrix.
(1) Prove that $X=(-A) A^{T}$ is a symmetric matrix.
(2) Tell whether $X Y$ is a symmetric matrix or not in which $Y=A^{T} A$
4. (20points) The matrix P that multiplies $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{T}$ to give $\left(x_{1}, x_{3}, x_{4}, x_{2}\right)^{T}$ is also a rotation matrix.
(1) Find P and P^{3}.
(2) Give the rotation axis.
(3) What is the angle of rotation from $v=(4,3,5,-\sqrt{14})^{T}$ to $P v=(4,5,-\sqrt{14}, 3)^{T}$
(4) Give the angle between v and $P v$
5. (10points) The sum of all the entries on the diagonal of a matrix A is called trace and written as $\operatorname{Tr}(A)$.
(1) Please prove that $\operatorname{Tr}\left(\boldsymbol{x} \boldsymbol{y}^{\boldsymbol{T}}\right)=\operatorname{Tr}\left(\boldsymbol{y}^{\boldsymbol{T}} \boldsymbol{x}\right)$ in which $\boldsymbol{x}, \boldsymbol{y}$ are both vectors.
(2) Please prove that $\operatorname{Tr}(\boldsymbol{A B})=\operatorname{Tr}(\boldsymbol{B} \boldsymbol{A})$ when $\boldsymbol{B} \boldsymbol{A}$ and $\boldsymbol{A} \boldsymbol{B}$ both exists.
