20221020Assignment- Block Matrix

1. A and B are both invertible, please give D^{-1} for the D below:

$$
D=\left[\begin{array}{ll}
A & O \\
C & B
\end{array}\right]
$$

Does it matter whether C is invertible or not?
2. Elimination for a block matrix: When you multiply the first block row $\left[\begin{array}{ll}A & B\end{array}\right]$ by $C A^{-1}$ and substract from the second row $\left[\begin{array}{ll}C & D\end{array}\right]$, the "Schur complement" S appears:

$$
\left[\begin{array}{cc}
I & O \\
-C A^{-1} & I
\end{array}\right]\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
A & B \\
O & S
\end{array}\right]
$$

(1) Please use A, B, C, D to give S
(2) If an identity matrix is wanted after some column operations applied to the matrix $\left[\begin{array}{ll}A & B \\ O & S\end{array}\right]$, can you give a matrix multiplication to denote this process? What matrix do you need? Should it be muliplied on the left or right?
(3) If $\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]=\left[\begin{array}{lll}2 & 3 & 3 \\ 4 & 1 & 0 \\ 4 & 0 & 1\end{array}\right]$, please find S
3. Give the inverse of the following matrix A :

$$
A=\left[\begin{array}{cccccc}
1 & 1 & -1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 & 3 \\
0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & -1 & 2 & 1
\end{array}\right]
$$

(1) by the Desmos or Excel;
(2) by block matrix method.

Then check whether they are the same.

