Final Exam

Math6002

- You have 90 minutes to finish all the tasks
- Any plagiarism will lead to 0 score
- Technology is allowed. But the process without tech is required for all tasks except for those noted by "Tech Allowed".

1. (24points) $\boldsymbol{v}_{\mathbf{1}}=(-1,2,1)^{T}, \boldsymbol{v}_{\mathbf{2}}=(1,0,-2)^{T}, \boldsymbol{b}=(2,4,-1)^{T}$. Give
a. the length of $\boldsymbol{v}_{\mathbf{1}}$ and $\boldsymbol{v}_{\mathbf{2}}$
b. the angle between v_{1} and v_{2}
c. the equation for the plane S spanned by $\boldsymbol{v}_{\mathbf{1}}$ and $\boldsymbol{v}_{\mathbf{2}}$
d. the normal vector of S
e. the orthogonal complement of S
f. the projection of \boldsymbol{b} onto the plane S
2. (6points) Are these vectors $\boldsymbol{v}_{\mathbf{1}}=(1,1,1,1)^{T}, \boldsymbol{v}_{2}=(2,3,2,4)^{T}, \boldsymbol{v}_{3}=(-2,1,2,5)^{T}$, and $\boldsymbol{v}_{4}=(-2,2,2,7)^{T}$ independent or dependent? Give the process.
3. (10points)

$$
A=\left[\begin{array}{ccc}
1 & 6 & 3 \\
2 & 7 & 4 \\
-1 & -1 & 3
\end{array}\right]
$$

a. Give the inverse for A step by step
b. (Tech Allowed) Solve the system of equation $A \boldsymbol{x}=\boldsymbol{b}$ in which $\boldsymbol{b}=(2,3,4)^{T}$
4. (10points) The column space of A is $x-2 y+z=0$.
a. Give a possible A
b. Give the complete solution for $A \boldsymbol{x}=\boldsymbol{b}$ in which $\boldsymbol{b}=(2,3,-1)^{T}$
5. (10points) (Tech Allowed) $A=\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right)$, in which $v_{1}=(1,2, \ldots, 100)^{T}, v_{2}=$
$\left(v_{2,1}, v_{2,2}, \ldots, v_{2,100}\right)^{T}, b=\left(1^{\frac{1}{3}}, \ldots, 100^{\frac{1}{3}}\right)^{T}$
a. If $v_{2, i}=1$ for any $i=1,2, \ldots, 100$, give the least squares solution for $A x=b$
b. If $v_{2, i}=1-3 i$ for any $i=1,2, \ldots, 100$, what will happen? Explain why it happens.
6. (10points) For A

$$
A=\left[\begin{array}{ccc}
1 & 2 & 0 \\
2 & 2 & -3 \\
0 & -3 & 2
\end{array}\right]
$$

a. Give the $L U$ factorization
b. Give the $L D U$ factorization
7. (20points) Give the basis for (1)column space, (2)nullspace (3) row space, and (4) left nullspace of the following matrix A

$$
A=\left[\begin{array}{lllll}
1 & 2 & 2 & 4 & 5 \\
2 & 3 & 3 & 7 & 8 \\
0 & 2 & 2 & 2 & 4
\end{array}\right]
$$

8. We all know that the product $A B$ could be understood as some linear combinations of all the columns of A. Based on this idea, prove that:
a. $C(A B)$ must be a subspace of $C(A)$, in which $C(A)$ and $C(A B)$ are the column space of A and $A B$ respectively.
b. $C(A B)=C(A)$ when there exists a matrix C to ensure $A B C=A$ (Tip: $A B C=$ $(A B) C$, which means that $A B C$ contains linear combinations of $A B$)
9. (5points) A, B are both square matrices and $(I-A-B)$ is invertible. If $A^{2}=A$ and $B^{2}=B$, please use the matrix multiplication to prove that
a. $\operatorname{rank}(A)=\operatorname{rank}(A B)$
b. $\operatorname{rank}(A)=\operatorname{rank}(B)$
