Mock Final

Math6002

- You have 90 minutes to finish all the tasks in real test
- Any plagiarism will lead to 0 score
- Technology is allowed. But the process without tech is required for all tasks except for those noted by "Tech Allowed".

1. (24points) $\boldsymbol{v}_{\mathbf{1}}=(1,1,1)^{T}, \boldsymbol{v}_{\mathbf{2}}=(2,0,-2)^{T}, \boldsymbol{b}=(2,3,4)^{T}$. Give
a. the length of \boldsymbol{v}_{1} and \boldsymbol{v}_{2}
b. the angle between $\boldsymbol{v}_{\boldsymbol{1}}$ and \boldsymbol{v}_{2}
c. the equation for the plane S spanned by \boldsymbol{v}_{1} and \boldsymbol{v}_{2}
d. the normal vector of S
e. the orthogonal complement of S
f. the projection of \boldsymbol{b} onto the plane S
2. (6points) Are these vectors $\boldsymbol{v}_{1}=(1,1,1,1)^{T}, \boldsymbol{v}_{2}=(1,2,0,-2)^{T}, \boldsymbol{v}_{3}=(-3,0,6,8)^{T}$, and $\boldsymbol{v}_{4}=(0,6,-2,4)^{T}$ independent or dependent? Give the process.
3. (10points)

$$
A=\left[\begin{array}{ccc}
1 & -2 & 2 \\
-2 & 6 & 10 \\
3 & -5 & 2
\end{array}\right]
$$

a. Give the inverse for A step by step
b. (Tech Allowed) Solve the system of equation $A \boldsymbol{x}=\boldsymbol{b}$ in which $\boldsymbol{b}=(2,3,4)^{T}$
4. (10points) The nullspace of A is $x+2 y-z=0$.
a. Give an A
b. Give the complete solution for $A \boldsymbol{x}=\boldsymbol{b}$ in which $\boldsymbol{b}=(4,8,-1)^{T}$
5. (10points) (Tech Allowed) $A=\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right)$, in which $v_{1}=(0,1,2, \ldots, 100)^{T}, v_{2}=$ $\left(v_{2,1}, v_{2,2}, \ldots, v_{2,100}\right)^{T}, b=\left(0^{\frac{1}{2}}, 1^{\frac{1}{2}}, \ldots, 100^{\frac{1}{2}}\right)^{T}$
a. If $v_{2, i}=i^{2}+1$ for any $i=1,2, \ldots, 100$, give the least squares solution for $A x=$ b
b. If $v_{2, i}=-3 i$ for any $i=1,2, \ldots, 100$, what will happen? Explain why will it happen.
6. (10points) For A

$$
A=\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]
$$

a. Give the $L U$ factorization
b. Give the $L D U$ factorization
7. (20points) Give the basis for (1)column space, (2)nullspace (3) row space, and (4) left nullspace of the following matrix A

$$
A=\left[\begin{array}{ccccc}
1 & 2 & 2 & 4 & 6 \\
2 & 4 & 3 & 6 & 9 \\
0 & 0 & 1 & -2 & -4
\end{array}\right]
$$

8. (5points) A, B are both square matrices and A is invertible. Prove that $\operatorname{rank}(A)=$ $\operatorname{rank}(A B)$ if and only if B is invertible.
9. (5points) If $\operatorname{rank}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}\right)=3$, $\operatorname{rank}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{4}\right)=3$, $\operatorname{rank}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{5}\right)=4$, please prove that $\operatorname{rank}\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{5}-\boldsymbol{\alpha}_{4}\right)=4$,
