Mock Final

Math6002

- You have 90 minutes to finish all the tasks in real test
- Any plagiarism will lead to 0 score
- Technology is allowed. But the process without tech is required for all tasks except for those noted by "Tech Allowed".
 - 1. (24points) $\boldsymbol{v_1} = (1,1,1)^T$, $\boldsymbol{v_2} = (2,0,-2)^T$, $\boldsymbol{b} = (2,3,4)^T$. Give
 - a. the length of v_1 and v_2
 - b. the angle between v_1 and v_2
 - c. the equation for the plane S spanned by v_1 and v_2
 - d. the normal vector of S
 - e. the orthogonal complement of *S*
 - f. the projection of **b** onto the plane S
 - 2. (6points) Are these vectors $\boldsymbol{v_1} = (1,1,1,1)^T$, $\boldsymbol{v_2} = (1,2,0,-2)^T$, $\boldsymbol{v_3} = (-3,0,6,8)^T$, and $\boldsymbol{v_4} = (0,6,-2,4)^T$ independent or dependent? Give the process.
 - 3. (10points)

$$A = \begin{bmatrix} 1 & -2 & 2 \\ -2 & 6 & 10 \\ 3 & -5 & 2 \end{bmatrix}$$

- a. Give the inverse for *A* step by step
- b. (Tech Allowed) Solve the system of equation $A\mathbf{x} = \mathbf{b}$ in which $\mathbf{b} = (2,3,4)^T$
- 4. (10points) The nullspace of A is x + 2y z = 0.
 - a. Give an A
 - b. Give the complete solution for $A\mathbf{x} = \mathbf{b}$ in which $\mathbf{b} = (4, 8, -1)^T$
- 5. (10points) (Tech Allowed) $A = (v_1, v_2)$, in which $v_1 = (0, 1, 2, ..., 100)^T$, $v_2 = (0, 1, 2, ..., 100)^T$

$$(v_{2,1}, v_{2,2}, \dots, v_{2,100})^T, b = (0^{\frac{1}{2}}, 1^{\frac{1}{2}}, \dots, 100^{\frac{1}{2}})^T$$

- a. If $v_{2,i} = i^2 + 1$ for any i = 1, 2, ..., 100, give the least squares solution for Ax = b
- b. If $v_{2,i} = -3i$ for any i = 1, 2, ..., 100, what will happen? Explain why will it happen.
- 6. (10points) For A

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

- a. Give the *LU* factorization
- b. Give the *LDU* factorization
- 7. (20points) Give the basis for (1)column space, (2)nullspace (3) row space, and (4) left nullspace of the following matrix *A*

	[1	2	2	4	6
A =	2	4	3	6	9
	Lo	0	1	-2	-4

- 8. (5points) A, B are both square matrices and A is invertible. Prove that rank(A) = rank(AB) if and only if B is invertible.
- 9. (5points) If $rank(\alpha_1, \alpha_2, \alpha_3) = 3$, $rank(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = 3$, $rank(\alpha_1, \alpha_2, \alpha_3, \alpha_5) = 4$, please prove that $rank(\alpha_1, \alpha_2, \alpha_3, \alpha_5 \alpha_4) = 4$,