- 1. Prove that $C(AB) \subseteq C(A)$, in which C(AB) is the column space of AB and C(A) is A.
- 2. Give the column space of the following matrices:

a.
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & -1 \\ 3 & 6 & 0 \end{bmatrix}$$

b. $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 0 & 1 \\ 3 & 2 & -1 \end{bmatrix}$

		[1	1	1]		[1	4	7]
c.	$[A \ AB]$, in which $A =$	2	0	1	, B =	2	5	8
		3	2	1	l l	3	6	9]

- 3. Prove that C(kA) = C(A) in which A is an m by n matrix, $k \neq 0$ is a real number, C(kA) is the column space of kA and C(A) is A
- 4. Prove that the column space of A is R^n if A is an n by n invertible matrix
- 5. Prove that the column space of $A_{m \times n}$ must be a subspace of R^k in which $k = \min(m, n)$