1. Prove that $C(A B) \subseteq C(A)$, in which $C(A B)$ is the column space of $A B$ and $C(A)$ is A.
2. Give the column space of the following matrices:
a. $A=\left[\begin{array}{ccc}1 & 2 & 1 \\ 2 & 4 & -1 \\ 3 & 6 & 0\end{array}\right]$
b. $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 2 & 0 & 1 \\ 3 & 2 & -1\end{array}\right]$
c. $\left[\begin{array}{ll}A & A B\end{array}\right]$, in which $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 0 & 1 \\ 3 & 2 & 1\end{array}\right], B=\left[\begin{array}{lll}1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9\end{array}\right]$
3. Prove that $C(k A)=C(A)$ in which A is an m by n matrix, $k \neq 0$ is a real number, $C(k A)$ is the column space of $k A$ and $C(A)$ is A
4. Prove that the column space of A is R^{n} if A is an n by n invertible matrix
5. Prove that the column space of $A_{m \times n}$ must be a subspace of R^{k} in which $k=$ $\min (m, n)$
