Text for Unit1-2

1. (45points) Computation:

(1) (5points) Give the measure of the angle between vector $\beta = (1, 1, 1)^T$ and $\alpha = (1, -1, 1)^T$

- (2) (5points) Give the inverse
 - $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 3 \\ 1 & 3 & 2 \end{bmatrix}$

(3) (5points)

$$\begin{bmatrix} 0 & 2 & 1 \\ 0 & 0 & -2 \\ 0 & 0 & 0 \end{bmatrix}^3$$

(4) (5points)

[0	0	1]	[1	3	5	[0	0	1]
1	0	0	1	2	1	1	0	0
0	2	0	3	3	5 1 -1	0	2	0

(5) (5points) If $x = (x_1, x_2, ..., x_n)^T$, please give $x^T x$ and $x x^T$

(6) (10points) Give the LU and LDU factorization for A

$$A = \begin{bmatrix} 1 & 0 & 1 \\ -2 & -2 & -2 \\ 3 & 4 & 5 \end{bmatrix}$$

(7) (10points) $c_1v + c_2w + c_3u = (1,2,3)^T$ in which v, w, u are all vectors and c_1, c_2, c_3 are all coefficients. $v = (1,1,1)^T$, w = (1,2,1)

- a) If u = (-1, -1, 2), give the value of c_1, c_2, c_3
- b) If there is no solution for c_1, c_2, c_3 , please give all possibilities for u
- 2. (25points)

(1) Find a 4 by 4 permutation matrix P with $P^3 = P$ in which $P \neq I$

(2) Prove that $A^T B A$ is a symmetric matrix if B(i,j) = B(j,i) is always true for $\forall i, j \in \{1, 2, ..., n\}$ in which B is a $n \times n$ matrix

(3) Explain why AB = BA(A, B are both matrices) is not correct for most of the cases and give 2 examples in which AB = BA is true.

- (4) Prove that (AB)C = A(BC) in which A, B, C are all matrices.
- (5) Prove that $P^{-1} = P^T$ is always true for any permutation matrix P