Text for Unit1-2

1. (45points) Computation:
(1) (5points) Give the measure of the angle between vector $\beta=(1,1,1)^{T}$ and $\alpha=(1,-1,1)^{T}$
(2) (5points) Give the inverse

$$
\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 3 \\
1 & 3 & 2
\end{array}\right]
$$

(3) (5points)

$$
\left[\begin{array}{ccc}
0 & 2 & 1 \\
0 & 0 & -2 \\
0 & 0 & 0
\end{array}\right]^{3}
$$

(4) (5points)

$$
\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 2 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 3 & 5 \\
1 & 2 & 1 \\
3 & 3 & -1
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 2 & 0
\end{array}\right]
$$

(5) (5points) If $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$, please give $x^{T} x$ and $x x^{T}$
(6) (10points) Give the $L U$ and $L D U$ factorization for A

$$
A=\left[\begin{array}{ccc}
1 & 0 & 1 \\
-2 & -2 & -2 \\
3 & 4 & 5
\end{array}\right]
$$

(7) (10points) $c_{1} v+c_{2} w+c_{3} u=(1,2,3)^{T}$ in which v, w, u are all vectors and c_{1}, c_{2}, c_{3} are all coefficients. $v=(1,1,1)^{T}, w=(1,2,1)$
a) If $u=(-1,-1,2)$, give the value of c_{1}, c_{2}, c_{3}
b) If there is no solution for c_{1}, c_{2}, c_{3}, please give all possibilities for u
2. (25points)
(1) Find a 4 by 4 permutation matrix P with $P^{3}=P$ in which $P \neq I$
(2) Prove that $A^{T} B A$ is a symmetric matrix if $B(i, j)=B(j, i)$ is always true for $\forall i, j \in\{1,2, \ldots, n\}$ in which B is a $n \times n$ matrix
(3) Explain why $A B=B A(A, B$ are both matrices) is not correct for most of the cases and give 2 examples in which $A B=B A$ is true.
(4) Prove that $(A B) C=A(B C)$ in which A, B, C are all matrices.
(5) Prove that $P^{-1}=P^{T}$ is always true for any permutation matrix P

