Ouid 5-6

$$
\left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right)
$$

$$
\left(\begin{array}{ccc:ccc}
1 & 2 & 1 & 1 & 0 & 0 \\
0 & -1 & 2 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & -\frac{1}{3}
\end{array}\right)
$$

(b) $h=2$

$$
\rightarrow\left(\begin{array}{ccc:cccc}
1 & 0 & 1 & -1 & 0 & \frac{2}{3} \\
0 & 0 & 2 & 1 & 1 & 1 & -\frac{1}{3} \\
0 & 1 & 0 & 1 & 0 & -\frac{1}{3}
\end{array}\right)
$$

$$
\begin{aligned}
& =\left(\begin{array}{cc}
\cos ^{2} \phi-\sin ^{2} \phi & -2 \sin \phi \cos \phi \\
2 \sin \phi \cos \phi & \cos ^{2} \phi-\sin ^{2} \phi
\end{array}\right) \rightarrow\left(\begin{array}{cc:ccc}
1 & 0 & -1 & 0 & \frac{2}{3} \\
0 & 0 & 1 & \frac{1}{2} & \frac{1}{2} \\
0 & -\frac{1}{6} \\
0 & 1 & 0 & 0 & -\frac{1}{3}
\end{array}\right) . \\
& =\left(\begin{array}{cc}
\cos (2(\phi) & -\sin (2 \phi)
\end{array}\right) .
\end{aligned}
$$

$$
=\left(\begin{array}{cc}
\cos (2 \phi) & -\sin (2 \phi) \\
\sin (2 \phi) & \cos (2 \phi)
\end{array}\right)
$$

$\left(\begin{array}{cc}\cos (2 \phi & -\sin (2 \phi) \\ \sin 2 \phi) & \cos (2 \phi)\end{array}\right)\left(\begin{array}{cc}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right)$

$$
\rightarrow\left(\begin{array}{ccc:ccc}
1 & 0 & 0 & -\frac{3}{2} & -\frac{1}{2} & \frac{5}{6} \\
0 & 0 & 1 & 1 & \frac{1}{2} & \frac{1}{2} \\
0 & -\frac{1}{6} \\
0 & 1 & 0 & 1 & 0 & -\frac{1}{3}
\end{array}\right)
$$

(3)

$$
\begin{array}{ll}
A=\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & -1 & 2 \\
3 & 3 & 3
\end{array}\right) & \text { 2. (1) } 3!=6 \\
A^{\top}=\left(\begin{array}{lll}
1 & 0 & 3 \\
2 & -1 & 3 \\
1 & 2 & 3
\end{array}\right), & \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 \\
0 & 1 & 0 \\
1 & 0
\end{array}\right), \\
\left(\begin{array}{cccccc}
1 & 2 & 1 & 1 & 0 & 0 \\
0 & -1 & 2 & 1 & 0 & 1 \\
0 & 3 & 3 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
\end{array}
$$

(2) P is invertible
$\therefore p^{-1} p^{5}-p^{-1} p$

$$
P^{4}=I
$$

$$
\begin{aligned}
& =\left(\begin{array}{ccc}
\cos (3 \phi) & -\sin (3 \phi) \\
\sin (3 \phi) & \cos \cos \phi)
\end{array}\right) \rightarrow\left(\begin{array}{ccccccc}
1 & 0 & 0 & -\frac{3}{2} & -\frac{1}{2} & \frac{5}{6} \\
0 & 1 & 0 & 1 & 1 & 0 & -\frac{1}{3} \\
0 & 0 & 1 & 1 & 1 & 1 & \frac{1}{2} \\
& & \frac{1}{2} & -\frac{1}{6}
\end{array}\right) . \\
& \therefore \text {, }\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)^{n}=\left(\begin{array}{cc}
\cos (n \phi) & -\sin n \phi) \\
\sin n \\
\sin \phi & \cos (n \phi)
\end{array}\right) \cdot \therefore, A^{-1}=\left(\begin{array}{ccc}
-\frac{3}{2} & -\frac{1}{2} & \frac{5}{6} \\
1 & 0 & -\frac{1}{3} \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{6}
\end{array}\right) \text {. }
\end{aligned}
$$

i) P can be $\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0\end{array}\right)$
3. 111

$$
\begin{aligned}
x^{\top} & =\left((-A) A^{\top}\right)^{\top} \\
& =\left(A^{\top}\right)^{\top}(-A)^{\top} \\
& =A\left(-A{ }^{\top}\right) \\
& =-A A^{\top}=x .
\end{aligned}
$$

$\therefore x$ is sypmetric
(2)

$$
\text { 2) } \begin{aligned}
x Y & =-A A^{\top} A^{\top} A \\
\therefore\left(X^{\top}\right)^{\top} & =Y^{\top} X^{\top} \\
& =\left[A^{\top} A\right)^{\top}\left(-A A^{\top}\right)^{\top} \\
& =A^{\top} A\left(-A A^{\top}\right) \\
& =-A^{\top} A A A^{\top}
\end{aligned}
$$

$$
\begin{aligned}
\left(x y^{Y}\right)^{\top} & \neq x^{Y} \\
i & =\operatorname{not}
\end{aligned}
$$

\therefore not symmetric.
4. 11)

$$
P=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

$$
\therefore P^{2}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

$$
p^{3}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=1
$$

is It's shrious ekat

$$
\text { A's swions ehat } \vec{v}=\vec{D} \text { whon } \vec{v}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right) \text {. }
$$

(3) $\quad 1^{3}=0^{6} \geq$

1 I If \vec{v} is notacied for
$\}$ times, it qoos back to
\} times, it joes back to
the onighal status
\therefore the argle of vaction is 120°
(4)

$$
\text { 4) } \begin{aligned}
\cos \theta & =\frac{\vec{D} \cdot(p \vec{u})}{\|\vec{b}\| \cdot\|p \vec{B}\|} \\
& =\frac{16+15-5 \sqrt{14}-3 \sqrt{14}}{16+9+25+14} \\
& =\frac{31-8 \sqrt{14}}{64} \\
\therefore \theta & =\arccos \frac{31-8 \sqrt{14}}{64}
\end{aligned}
$$

5. (1) $\underset{x}{\vec{y}} \sum^{0}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}$ $y^{\top} \vec{x}=$
$\vec{x} \vec{y}^{T}=\left(\begin{array}{cccc}x_{1} y_{1} x_{1} y_{n} & \cdots & x_{1} y_{n} \\ \vdots & x_{2} y_{2} & & \vdots \\ \vdots & \ddots & \vdots \\ x_{n} y_{1} & \cdots & x_{n} y_{n}\end{array}\right)$
$\therefore T_{\mu}\left(\vec{x} \vec{y}^{\top}\right)=\sum_{i=1}^{n} x_{i} y_{i}=\operatorname{TM}\left(y^{\top} \vec{x}\right)$.
(a) Set $A_{m \times i}, B_{n \times m}$

$$
\therefore A B=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{cccc}
b_{11} & \cdots & b_{1 m} \\
\vdots & & & \vdots \\
b_{n 1} & \cdots & b_{n m}
\end{array}\right)
$$

$$
\begin{aligned}
& =\left(\begin{array}{cc}
\sum_{i=1}^{n} a_{i} b_{n} & \cdots \\
\vdots & \sum_{i=1}^{n} a_{1 i} b_{i m} \\
\vdots \\
\sum_{i=1}^{n} a_{m i} b_{i n} & \cdots \\
\sum_{i=1}^{n} a_{m i} b_{i m}
\end{array}\right) \\
& T_{r}(A B)=\sum_{i=1}^{n} a_{1 i} b_{i}+\cdots+\sum_{i=1}^{n} a_{m i n} b_{m} \\
& m i n
\end{aligned}
$$

$$
=\left(\begin{array}{ccc}
\sum_{i=1}^{m} b_{1 i} a_{i 1} & \cdots & \sum_{i=}^{m} b_{i j} a_{i n} \\
\vdots \\
\sum_{i=}^{m} b_{n i} a_{i} & \cdots & \sum_{i \eta}^{m} b_{n i} a_{i} m
\end{array}\right)
$$

. It doesn't mater

$$
(3)
$$

$$
\begin{array}{ll}
A=2 . & B=\left(\begin{array}{ll}
3 & 3
\end{array}\right) \\
C=\binom{4}{4} & D=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad
\end{array} \quad\left(\begin{array}{cc:cc}
A & D & 1 & -A^{-1} B \\
0 & 5 & 0 & L
\end{array}\right) .
$$

$$
\begin{aligned}
\therefore S & =-C A^{-1} B+P \\
& =-\binom{4}{4}\left(\begin{array}{l}
-1 \\
\therefore
\end{array}(3-3)+\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{lll}
1 & A^{-1}-A^{-1} B\left(D-A^{-1} A\right)^{1} \\
0 & 1 & 0 \cdot\left(D-C A^{-1} B\right)^{-1}
\end{array}\right)\right. \\
& =\left(\begin{array}{cc}
-6 & -6 \\
-6 & -6
\end{array}\right)+\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
-5 & -6 \\
-6 & -5
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{j=1}^{m}\left(\sum_{i=1}^{n} a_{i j} b_{i j}\right) . \\
& \therefore T_{M}(A B)=\sum_{i=1}^{n} a_{i} b_{i}+\cdots+\sum_{3=1}^{n} a_{m i s i m m} \quad 1 .\left(\begin{array}{ll:ll}
A & 0 & 1 & 0 \\
C & B & 0 & 1
\end{array}\right) \text {. } \\
& \left.\left.\begin{array}{l}
=\sum_{j=1}^{m} \sum_{i=1}^{n} a_{j} i_{j} b_{r_{j}} \\
\\
b_{n} \\
\cdots
\end{array}\right] \quad b_{1 m}\right)\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
b_{n 1} & \cdots & b_{n m}
\end{array}\right) \\
& =\left(\begin{array}{cc:cc}
A & 0 & I & 0 \\
0 & B & C A^{-1} & I
\end{array}\right) \\
& =\left(\begin{array}{cc:cc}
A & 0 & I & 0 \\
0 & I & -B^{-1} C A^{-1} & B^{-1}
\end{array}\right) . \\
& B A=\left(\begin{array}{ccc}
b_{n} & \cdots & b_{1 m} \\
\vdots & \ddots & \vdots \\
b_{n 1} & \cdots & b_{n m}
\end{array}\right)\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right)=\left(\begin{array}{cc:cc}
1 & 0 & A^{-1} & 0 \\
0 & 1 & -B^{-1} C A^{-1} & B^{-1}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \operatorname{Tr}(B A)=\sum_{j=1}^{n}\left(\sum_{i j}^{m} b f+a_{i j}\right) \\
& =\sum_{j=j}^{n} \sum_{i=j}^{m} b_{j i} a_{i j} \\
& \text { '' } T M A B)=/ M(B A)
\end{aligned}
$$

$A_{1}^{-1}:$

$$
\begin{aligned}
& \text { 3. (2) } A=\left(\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right) \text {. } \\
& A_{1}=\left(\begin{array}{ccc}
1 & 1 & -1 \\
2 & 1 & 0 \\
1 & -1 & 0
\end{array}\right), A_{2}=0 \\
& A_{3}=0 . \quad A_{4}=\left(\begin{array}{ccc}
2 & 2 & 3 \\
1 & -1 & 0 \\
-1 & 2 & 1
\end{array}\right) \text {. } \\
& \therefore A=\left(\begin{array}{ll}
A_{1} & 0 \\
0 & A_{4}
\end{array}\right) \text {, } \\
& \therefore A^{-1}=\left(\begin{array}{cc}
A_{1}^{-1} & 0 \\
0 & A_{4}^{-1}
\end{array}\right) \text {. } \\
& A_{4}^{-1}:\left(\begin{array}{ccc:ccc}
2 & 2 & 3 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 & 1 & 0 \\
-1 & 2 & 1 & 0 & 0 & 1
\end{array}\right) \text {. } \\
& \begin{aligned}
& \left(\begin{array}{ccc:ccc}
1 & 1 & -1 & 1 & 1 & 0 \\
2 & 1 & 0 \\
1 & - & 0 & 1 & 0 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0
\end{array}\right) \\
\rightarrow & \left(\begin{array}{ccccc}
1 & 1 & -1 & 1 & 0 \\
0 & -1 & 2 & -2 & 1 \\
0 & -2 & 1 & 1 & -1 \\
0 & 0 & 0 \\
0
\end{array}\right)
\end{aligned} \\
& \longrightarrow\left(\begin{array}{cc:c:ccc}
1 & 1 & - & 1 & 0 & 0 \\
0 & -1 & 2 & -2 & 1 & 0 \\
0 & 0 & -3 & 3 & -2 & 1
\end{array}\right) \\
& \rightarrow\left(\begin{array}{cc:ccc}
1 & 1 & -1 & 1 & 0 \\
0 \\
0 & -1 & 0 & 0 & -\frac{1}{3} \\
0 & \frac{2}{3} \\
0 & 0 & 1 & -1 & \frac{2}{3}
\end{array}-\frac{1}{3} .\right. \\
& \rightarrow\left(\begin{array}{ccc:ccc}
1 & 0 & 0 & 0 & \frac{1}{3} & \frac{1}{3} \\
0 & 1 & 0 & 0 & \frac{1}{3} & -\frac{2}{3} \\
0 & 0 & & -1 & \frac{2}{3} & -\frac{1}{3}
\end{array}\right) \\
& \text { २) } A_{1}^{-1}=\left(\begin{array}{ccc}
0 & \frac{1}{3} & \frac{1}{3} \\
0 & \frac{1}{3} & -\frac{2}{3} \\
-1 & \frac{2}{3} & -\frac{1}{3}
\end{array}\right) \text {. } \\
& \rightarrow\left(\begin{array}{ccc:ccc}
0 & 4 & 3 & 1 & -2 & 0 \\
1 & -1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 1
\end{array}\right) \\
& \rightarrow\left(\begin{array}{cc:cccc}
0 & 0 & - & 1 & -6 & -4 \\
1 & -1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 1
\end{array}\right) \\
& \therefore A^{-1}=\left(\begin{array}{cccccc}
0 & \frac{1}{3} & \frac{1}{3} & 0 & 0 & 0 \\
0 & \frac{1}{3} & -\frac{2}{3} & 0 & 0 & 0 \\
-1 & \frac{2}{3} & -\frac{1}{3} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -4 & -3 \\
0 & 0 & 0 & 1 & -5 & -3 \\
0 & 0 & 0 & -1 & 6 & 4
\end{array}\right) \\
& \rightarrow\left(\begin{array}{ccc:ccc}
0 & 0 & -1 & 1 & -6 & -4 \\
1 & 0 & 0 & 1 & -4 & -3 \\
0 & 1 & 0 & 1 & -5 & -3
\end{array}\right) \text {. } \\
& \rightarrow\left(\begin{array}{ccc:ccc}
1 & 0 & 0 & 1 & -4 & -3 \\
0 & 1 & 0 & 1 & -5 & -3 \\
0 & 0 & 1 & -1 & 6 & 4
\end{array}\right) \text {. }
\end{aligned}
$$

