
AP-CSA
Using Objects

YING HUANG

SEP.2022

C L A S S &
O B J E C T

THE RELATIONSHIP CLASSES
AND OBJECTS

Class: house

Attribute:

Color

Owner

…

Ying Jerry Stan

Behavior:

ChangeColor()

THE RELATIONSHIP CLASSES
AND OBJECTS

Class: Person

Attribute: ??

Behavior:??

CLASS & OBJECT

A class is a blueprint for creating objects with the

same behavior and defined attributes.

An object is a specific entity, made from a class, that

you can manipulate in your programs.

Objects are instances of classes with

variables used to name them

Give a example about object and class

in the really world.

CLASS & OBJECT

Following with coding to create a class house !

Step 1. Create a java file, naming house

Step 2. declare the house class’s attributes(like color,

owner, ID…)

Step 3. Constructor(Method)

CONSTRUCTOR 构造函数

The constructor of a class is a method that

allows us to initialize the attributes(variables) of

an object when it is first created.

Syntax:

public className(…)

{

….

}

The name of constructor is

same as class's name!

OVERLOADED CONSTRUCTORS

Constructors are said to be overloaded when

there are multiple constructors with the same

name but a different signature.

public house()

{

….

}

public house(String color)

{

….

}

no parameter one parameter

A parameter is a variable used to define a

particular value during a function definition.

OVERLOADED CONSTRUCTORS

We can call different constructors to

initialize our objects.

house h1 = new house();

// default constructor initializes

house h2 = new house(“Red”);

// h2.color = red

house h3 = new house(“Red”,”Ying”,111);

// h3.color = Red, h3.owner =Ying h3.ID =111

CREATE A OBJECT
An object variable is created using the

keyword new followed by a call to a

constructor.

Syntax:

className variableName = new className(…);

//example

house h1 =new house();

house h2 = new house(“Green”, ”Ying”..)

USING A OBJECT

We can access the attributes of an object by using

the dot notation.

Syntax:

variableName.attribute = value;

//example

h1. color = “Red”;

h1. ID = “111”;

PRINT OBJECT

System.out.print(object); // the address of object

PRIMITIVE VS. REFERENCE
TYPE
While the memory associated with a variable of a reference type holds

an object reference value. This value is the memory address of the

referenced object.

house h3 = new house(“Red”,”Ying”,111)

house h4 = h3;

// h3 and h4 stores the same address in

memory therefore both refer to the same

object.

“Red”

“Ying”

“111”

h4

h3

PRIMITIVE VS. REFERENCE
TYPE
The memory associated with a variable of a primitive

type(int, double, boolean) holds an actual primitive value.

int num1 = 3;

// the memory associated with x actually holds the value 3

int num2 = num1;

// the value of num2 copies from num1, num2 has memory

to hold 3.

Here we have two different integers in different

memory both of which has the value 3.

M ET H O D

MODULARITY

• Modularity: Writing code in smaller, more manageable

components or modules. Then combining the modules into

a cohesive system.

In modularity, break complex code into smaller tasks and

organize it using methods.

Method define the behaviors or functions for objects.

A Method is a named group of programming instructions

that accomplish a specific task.

EXAMPLE

Consider the following code which asks the user to enter

two numbers and print out the average.

Scanner console = new Scanner(System.in);

System.out.print("Enter a number: ");

int num1 = console.nextInt();

System.out.print("Enter a number: ");

int num2 = console.nextInt();

System.out.println("The average is " + (num1 + num2)/2.0);

METHOD 方法
A method is a named group of programming instructions

that accomplish a specific task.

Example:

1. Access specifier/modifiers: public

2. Return type: double

3. Method name: printArea

4. Parameter list: none

5. Method body:{…}

public double printArea()

{…}

METHOD SIGNATURE

The method signature is the combination

of the method name and the parameter list.

Example:

printArea()

PARAMETERS 参数

⚫A parameter is a variable used to define a

particular value during a function definition.

⚫The parameters in the method header are

formal parameters.

⚫The parameters in the method signature are

actual parameters/ arguments.

public void printArea(int width, int height)

{ int are =width*height; }

printArea(5, 10)

RETURN TYPE

• return: To send out a value as the result of a method.

• The opposite of a parameter:

➢Parameters send information in from the caller to the

method.

➢Return values send information out from a method to its

caller.

⚫ Returned values can be stored in a variable, used in

other math expressions or printed on the console.

public double printArea()

{…}

NO-RETURN- VOID

⚫Void methods do not have return values.

⚫Void methods do not have return values and are

therefore not called as part of an expression.

public void printArea()

{…}

EXERCISE

1. Create two java files: Rectangle.java and

RectangleTester.java

2. Rectangle.java will include width and height as their

attributes.

3. Rectangle.java will have a method to change the width of

object. (no static method)

4. Rectangle.java will have a method to calculate the area of

Rectangle and return the area.

CODEHS.COM

Each student should signup at

https://codehs.com/go/2F8C6

Finish

2.4.5-2.4.7

2.5.5-2.5.8

2.6.6-2.6.8

https://codehs.com/go/2F8C6

SCREENSHOT

