YING HUANG
SEP.2022

BENING QINGSEI;I-

N\

.
TERRFAR

BEUING QINGSEN

SCHOOL

THE RELATIONSHIP CLASSES
AND OBIJECTS

Attribute:
Color Behavior:
Class: house Owner

|—| ChangeColor()

Ying Jerry Stan

THE RELATIONSHIP CLASSES
AND OBIJECTS

O

Class: Person TLI\"

Attribute: ??

Behavior:??

CLASS & OBIECT

A class is a blueprint for creating objects with the

same behavior and defined attributes.

An object is a specific entity, made from a class, that
you can manipulate in your programs.

Objects are instances of classes with

variables used to name them O

Give a example about object and class
in the really world.

9

CLASS & OBIECT

Following with coding to create a class house !

Step |. Create a java file, naming house

Step 2. declare the house class’s attributes(like color,
owner, ID...)

Step 3. Constructor(Method)

9

CONSTRUCTOR 7235 R 24

The constructor of a class is a method that
allows us to initialize the attributes(variables) of
an object when it is first created.

The name of constructor is

same as class's name!
Syntax:

OVERLOADED CONSTRUCTORS

Constructors are said to be overloaded when
there are multiple constructors with the same
name but a different signature.

public (String color)

{

no par‘ameter one parameter

A parameter is a variable used to define a
particular value during a function definition.

OVERLOADED CONSTRUCTORS

We can call different constructors to
initialize our objects.

house hl = new house();
/| default constructor initializes

house h2 = new house("‘Red”);

/l h2.color = red

house h3 = new house(“Red”,”Ying”, 1 | |);
// h3.color = Red, h3.owner =Ying h3.ID =111

GCREATE A OBJEGT

An object variable is created using the

keyword new followed by a call to a
constructor.

Syntax:

className variableName = new className(...);

[lexample
house hl =new house();
house h2 = new house(“Green”, ’Ying”..)

USING A OBJECT

We can access the attributes of an object by using
the dot notation.

Syntax:

variableName.attribute = value;

[lexample

hl.color = “Red’;
hl.ID = “I11”;

PRINT OBJECT

System.out.print(object); // the address of object

9

PRIMITIVE VS. REFERENCE
TYPE

While the memory associated with a variable of a reference type holds

an object reference value.This value is the memory address of the
referenced object.

house h3 = new house(“Red”,’Ying”,111)

house h4 = h3;

// h3 and h4 stores the same address in

memory therefore both refer to the same

object.

PRIMITIVE VS. REFERENCE
TYPE

The memory associated with a variable of a primitive
type(int, double, boolean) holds an actual primitive value.

int num| = 3;
I/ the memory associated with x actually holds the value 3
int num2 = numl|;

I/ the value of num2 copies from num|, num2 has memory

to hold 3.

Here we have two different integers in different
memory both of which has the value 3.

N\

.
TERRFAR

BEUING QINGSEN

SCHOOL

METHOD

MODULARITY

* Modularity: Writing code in smaller, more manageable
components or modules. Then combining the modules into

a cohesive system.

In modularity, break complex code into smaller tasks and
organize it using methods.

Method define the behaviors or functions for objects.

A Method is a named group of programming instructions
that accomplish a specific task.

EXAMPLE

Consider the following code which asks the user to enter

two numbers and print out the average.

Scanner console = new Scanner(System.in);
System.out.print("Enter a number:");

int num| = console.nextlnt();
System.out.print("Enter a number:");

int num?2 = console.nextlnt();

System.out.printIn("The average is " + (num| + num?2)/2.0);

METHOD ;7%

A method is a named group of programming instructions
that accomplish a specific task.

Example:

1. Access specifier/modifiers: public
2. Return type: double

3. Method name: printArea

4. Parameter list: none

5. Method body: {..}

METHOD SIGNATURE

The method sighature is the combination
of the method name and the parameter list.

Example:

9

PARAMETERS =%}

® A parameter is a variable used to define a
particular value during a function definition.

® The parameters in the method header are
formal parameters.

int width, int height

® The parameters in the method signature are
actual parameters/ arguments.

510 >

RETURN TYPE

* return: To send out a value as the result of a method.

* The opposite of a parameter:

> Parameters send information in from the caller to the
method.

> Return values send information out from a method to its
caller.

® Returned values can be stored in a variable, used in
other math expressions or printed on the console.

double

NO-RETURN- VOID

® Void methods do not have return values.

® Void methods do not have return values and are

therefore not called as part of an expression.

void

W

|. Create two java files: Rectangle.java and
Rectangle Tester.java

2. Rectangle.java will include width and height as their
attributes.

3. Rectangle.java will have a method to change the width of
object. (no static method)

4. Rectangle.java will have a method to calculate the area of

9

Rectangle and return the area.

Each student should signup at

Finish
2.4.5-2.4.7

2.5.5-2.5.8
2.6.6-2.6.8 O

https://codehs.com/go/2F8C6

SGREENSHOT

Practice @ Resume E Ying Huang ~

QOutput Test Cases

2.4.5 Hello! Submit + Continue

‘Saqe

4, j
% HelloTester java Test Cases

1~ import java.util.Scanner;

2 A
. Check Code Minimize # | Expand .”
3 public class HelloTester - ’ “

4~
5 public static void main(String[] args)

P { 2/2
7 // Create a Scanner object

8 Scanner input = new Scanner(System.in);

9 Pass Test Message
1@ System.out.println("Please enter your name: ");

11 String name = input.nextline(); > You should create one Hello object Great!
12

13 Hello greeting = new Hello(name);

14 > You should print three greetings Great!
15 //Answers may vary slightly here

16 greeting.english();

17 greeting.russian();

18 greeting.french();

19

20 }

21 |}

