
AP-CSA
Heritance

YING HUANG

DEC .2022



Object-oriented 
Programming
Object-oriented programming has three main 

features: 

– Objects have data (fields) and behavior (methods) and do 

the work in an object-oriented program.

– Inheritance allows for cleaner code since a class can 

inherit fields and behavior from another class instead of 

copying code from class to class. 

– Polymorphism allows for specialized behavior based on 

the run-time type. 



REVIEW 
CLASS AND OBJECT

All objects created by the same class have the 

same fields and methods. 

– A field is something the object knows about itself 

– A method is a thing the object can do.



EXAMPLE 
CLASS AND OBJECT

See IDEA



I N H E R I TA N C E



INHERITANCE  继承
You may have heard of someone coming into an 

inheritance, which often means they were left something 

from a relative who died. Or, you might hear someone 

say that they have inherited musical ability from a parent. 

In Java, all classes can inherit attributes (instance 

variables) and behaviors (methods) from another class. 

The class being inherited from is called the parent 

class or superclass. The class that is inheriting is called 

the child class or subclass.



INHERITANCE  继承
Inheritance: A way to form new classes based on existing 

classes, taking on their attributes/behavior.

– a way to group related classes

– a way to share code between two or more classes

One class can extend another, absorbing its data/behavior.

– Superclass: The parent class that is being extended.

– Subclass: The child class that extends the superclass and inherits 

its behavior.

• Subclass gets a copy of every instance variable and method from superclass



INHERITANCE  继承
• A UML (Unified Modeling Language) class diagram shows 

classes and the relationships between the classes as seen in Figure 1. 



INHERITANCE  继承

• Syntax
A class can extend another class by using the keyword extends then the name 

of the class it is extending.

Below, Car extends Vehicle. 

If you leave off the extends keyword 

when you declare a class then the 

class will inherit from the Object 

class. The Vehicle class declared 

below will inherit from the Object 

class.



INHERITANCE  继承
• “has a” relationship: represent instance variables in our 

class

Example:  

A Vehicle class could have model, year as instance variable.

A Person class could have name and birthday as instance variable.

• “is a” relationship: one class is a more specific example of 

another class.

Example:  

a Car is a kind of  Vehicle

a Student is a Pearson



INHERITANCE  继承

• If you notice that several classes share the same data and/or behavior, 

you can pull that out into a parent class. This is called generalization. 

• Inheritance allows you to reuse data and behavior from the parent 

class. 

• Conversely, inheritance is also useful for specialization which is 

when you want most of the behavior of a parent class, but want to do 

at least one thing differently and/or add more data. 



INHERITANCE  继承

Code 

See IDAE



INHERITANCE  继承

• We can create a hierarchy of classes that allow us to 

reuse common attributes and behaviors.

• A subclass uses the IS A relationship signifying that it is a 

more specific example of the broader superclass.

• The keyword extends is used to establish the relationship 

between a superclass and the subclass.

• A class can only extend one superclass.



INHERITANCE  继承
• Subclasses inherit all the public and private instance 

variables in a superclass that they extend, but they cannot 

directly access private variables.

• And constructors are not inherited.

• How do you initialize inherited private variables if you don’t 

have direct access to them in the subclass?



CONSTRUCTOR

• Since constructors are not inherited, a subclass needs to create 

its own constructor.

• Subclass constructors must call the parent constructor.

• The superclass constructor can be called from the first line of 

a subclass constructor by using the keyword super and 

passing appropriate parameters.

• When no superclass is defined, the Object class is the 

superclass



INHERITANCE  继承

Code 

See IDAE



REVIEW
What is the class?

ANS: 

A class is the formal implementation, or blueprint, of the 

attributes and behaviors of an object. 

What is the superclass and subclass ?

ANS:

Superclass:  The parent class that is being extended.

Subclass:  The child class that extends the superclass and inherits 

its behavior.



SUPERCLASS VS. SUBCLASS



CLASS HIERARCHY

As we extend down, the 

subclasses have access to all of 

the public methods of the 

parent.

For example, if the Person class 

has a public getName() method, 

any Person, Student, or HS 

Student Class object could call 

that method

Object Class
 toString()

Person Class
 Name

 Birthday

Student Class
 Grade

HS Student Class
 GPA



REVIEW

What Java keyword is used to specify the parent 

class?

A. superclass

B. parent

C. extends

D. Class

ANS：C



REVIEW
A bookstore is working on an on-line ordering system. For each type of 

published material (books and movies) they need to track the id, title, 

author(s), date published, and price. Which of the following would be the 

best design?

A. Create one class PublishedMaterial with the requested fields plus 

type

B. Create classes Book and Movie and each class has the requested 

fields

C. Create the class PublishedMaterial and have Book and Movie inherit 

from it all the listed fields

D. Create one class BookStore with the requested fields plus type

ANS： C



REVIEW
Given the class definitions of Point2D and Point3D below, which of the 

constructors that follow (labeled I, II, and III) would be valid in the 

Point3D class?

A. II only

B. III only

C. I and II only

D. I, II, and III

ANS: D



O V E R R I D I N G
V S .
O V E R LO A D I N G



OVERRIDING

Override: To write a new version of a method in a subclass that 

replaces the superclass's version. To override an inherited method, 

the method in the child class must have the same signature

1. Same method name, 

2. Same parameter list (order, type)

3. Same return type (or a subclass of the return type)

Have we done this before? 

Answer: toString()



OVERRIDING - CODE

public class Employee {

// some constructors and methods not shown

public String getVacationForm() {
return "pink";

}

}

public class Lawyer extends Employee {

// overrides getVacationForm method in Employee class

public String getVacationForm() {
return "yellow";

}
}

Superclass

Subclass



KEYWORD “SUPER”
Sometimes you want the subclass to do more than what a superclass’ 

method is doing. You want to still execute the superclass method, but 

you also want to override the method to do something else. 

But, since you have overridden the parent method how can you still call 

it? You can use super.method() to force the parent’s method to be 

called.

We’ve used super() before to call the superclass’ constructor. There are 

two uses of the keyword super:

• super(); or super(arguments); calls just the super constructor if 

put in as the first line of a subclass constructor.

• super.method(); calls a superclass’ method (not constructors).



OVERRIDING

Code 

See IDAE



KEYWORD “SUPER”
Example 1

Given the following class declarations, and assuming that the following 

declaration appears in a client program: Base b = new Derived();, what is 

the result of the call b.methodOne();?

ANS: ABDC



OVERRIDING
Remember that an object always keeps a reference to the class that 

created it and always looks for a method during execution starting in 

the class that created it. 

If it finds the method in the class that created it, it will execute that 

method.

If it doesn’t find it in the class that created it, it will look at the parent 

of that class. 

It will keep looking up the ancestor chain until it finds the method. The 

method has to be there, or else the code would not have compiled.



OVERLOADING

Methods are said to be overloaded when there are multiple 

methods with the same name but a different signature in the 

same class. 

The methods are distinguished by:

1. Number of parameters

2. Type of the parameters

3. Order of the parameters

Have we done this before? 

Answer: more constructors!



OVERLOADING - CODE

public class Overload{

public void method1(int c)

{…}

public void method1(int c, double d) 

{…}

public void method1(double c)

{…}

public void method1(double d, int c)

{…}

}

Number of 

Parameters

Type of Parameters

Order of Parameters



SUMMARY

Overriding Overloading

Implementing Runtime Polymorphism Implementing Compile time polymorphism

Occurring between superclass and subclass Occurring the methods in the same class

The same signature 

i.e. same method name, method arguments 

and return type.

The names are the same 

but the parameters are different.



P O LY M O R P H I S M



CLASS HIERARCHY

Class hierarchy facilities code reuse by putting common attributes and 

behaviors in the superclass.

In Java, we can say that when a class S is a class T , and S is a subclass to 

the T superclass.

Person Class
 Name

 Birthday

Student Class
 Grade

Work Class
 Job title

Superclass (T)

Subclass (S) Subclass (S)



POLYMORPHISM 多态
• Polymorphism comes from the Greek poly meaning many and 

morph meaning forms.

• Polymorphism is the capability of a method to do different things 

depending on the object it is acting upon.

• In Java and other OOP languages, the concept of polymorphism

means that an object can take on different forms depending on its 

implementation.

• Java can call the correct method even when an object is disguised as a 

more generic reference type.

– method overriding(run-time polymorphism)

– method overloading(compile-time polymorphism)



POLYMORPHISM 多态
Code 

See IDAE



POLYMORPHISM 多态

When we use a Superclass as a reference type 

T, then we can create an object as either the 

Superclass T, or any Subclass S.

Reference Type

Variable declaration

Object Type

Variable instantiation



POLYMORPHISM 多态
Code 

See IDAE



POLYMORPHISM 多态
Polymorphism allows flexibility when we create with a Superclass 

reference type.

➢We can use a type T as a formal parameter in a method, then we pass any 

object of type T or S.

• Syntax:

public return type methodname (typeT object){…}

Call the method:  methodname(T/S);

// using object T or object S to call this method.

➢We can create Arrays and Arraylist of a T and store any type T or S objects.

• Syntax:

– List:  TypeT [] name = {new typeT/S(…), new typeT/S(…), …};

name[0] = new typeT/S(…);

– Array List:  ArrayList<type T> name = new ArrayList<type T/S>();

name.add(new typeT/S(…));



COMPILE-TIME
At the time a program gets compiled, methods in or inherited by the 

declare/reference type determine the correctness of a non static 

method call. (not object type)

See Code

Reference Type

Variable declaration

Object Type

Variable instantiation



RUN-TIME
At the time a program runs, the methods in the actual object type gets 

executed. If the method doesn’t exist there, Java looks to the superclass 

for the method.

See Code



COMPILE-TIME VS RUNTIME
• An error is a compile-time error if it happens when the 

program compiles. 

– All method overloading errors are compile-time errors. 

– missing semicolons, curly braces.

• An error is a runtime error if it happens when the program 

runs. 

– Casting too far down, sideways are run-time errors. 

– divide by zero, out of bounds index errors

A runtime error compiles without errors. 



THE COSMIC SUPERCLASS OBJECT

All types of objects have a superclass named Object.

– Every class implicitly extends Object

The Object class defines several methods:

– public String toString()

Returns a text representation of the object,

often so that it can be printed. We have seen

this in Unit 5. 

– public boolean equals(Object other)

Compare the object to any other for equality.

Returns true if the objects have equal state.



OBJECT VARIABLES

You can store any object in a variable of type Object.

Object o1 = new Point(5, -3);

Object o2 = "hello there";

Object o3 = new Scanner(System.in);

An Object variable only knows how to do general things.

String s = o1.toString(); // ok(memory address)

int len = o2.length();    // compile-time error

String line = o3.nextLine(); // compile-time error



RECALL: COMPARING 
OBJECTS
The == operator does not work well with objects.

• == compares references to objects, not their state. It only produces 

true when you compare an object to itself.

Point p1 = new Point(5, 3);

Point p2 = new Point(5, 3);

if (p1 == p2) {   // false

System.out.println("equal");

}

...

x 5 y 3
p1

p2

...

x 5 y 3



THE EQUALS METHOD
The equals method compares the state of objects in String class.

if (str1.equals(str2)) {

System.out.println("the strings are equal");

}

But if you write a class, its equals method behaves like ==

if (p1.equals(p2)) {   // false :-(

System.out.println("equal");

}

– This is the behavior we inherit from class Object.

– Java doesn't understand how to compare Points by default.



EQUALS METHOD

We can change this behavior by writing an equals method that 

overrides the one inherited from Object.

– Note the method header including the parameter Object o 

below.

– The method should compare the state of the two objects and return 

true if they have the same x/y position.

public boolean equals(Object o) {

Point other = (Point) o;

return (x == other.x && y == other.y) 

}



AN IMPLEMENTATION OF POINT

Here's the Point class with both toString and equals overriden. 

public class Point {

private int x;

private int y;

public Point(int newX, int newY){

x = newX;

y = newY;

}

public boolean equals(Object o) {

Point other = (Point) o;

return (x == other.x && y == other.y);

}

public String toString(){

return "(" + x + ", " + y + ")";

}

}



MAIN

public class Main {

public static void main(String[] args){

Point x = new Point(2, -5);

Point y = new Point(2, -5);

Point z = new Point(3, 8);

Point w = z;

System.out.println(x == y); // false

System.out.println(x.equals(y)); // true

System.out.println(z == w); // true

System.out.println(x.equals(w)); // false

System.out.println(x); //(2, -5)

// call toString() implicitly

System.out.println(z.toString()); //(3, 8)

}

x and y are two different objects

but mathematically equivalent.

Overriding equals allows us to 

easily 

recognize that certain objects are

equivalent. 


	幻灯片 1: AP-CSA  Heritance
	幻灯片 2: Object-oriented Programming
	幻灯片 3: Review  Class and object
	幻灯片 4: Example  Class and object
	幻灯片 5: Inheritance
	幻灯片 6: Inheritance  继承
	幻灯片 7: Inheritance  继承
	幻灯片 8: Inheritance  继承
	幻灯片 9: Inheritance  继承
	幻灯片 10: Inheritance  继承
	幻灯片 11: Inheritance  继承
	幻灯片 12: Inheritance  继承
	幻灯片 13: Inheritance  继承
	幻灯片 14: Inheritance  继承
	幻灯片 15: Constructor
	幻灯片 16: Inheritance  继承
	幻灯片 17: Review
	幻灯片 18: Superclass Vs. Subclass
	幻灯片 19: Class hierarchy
	幻灯片 20: Review
	幻灯片 21: Review
	幻灯片 22: Review
	幻灯片 23: Overriding Vs. Overloading
	幻灯片 24: Overriding
	幻灯片 25: Overriding - code
	幻灯片 26: Keyword “super”
	幻灯片 27: Overriding
	幻灯片 28: Keyword “super”
	幻灯片 29: Overriding
	幻灯片 30: Overloading
	幻灯片 31: Overloading - Code
	幻灯片 32: Summary
	幻灯片 34: polymorphism
	幻灯片 35: Class Hierarchy
	幻灯片 36: Polymorphism 多态
	幻灯片 37: Polymorphism 多态
	幻灯片 38: Polymorphism 多态
	幻灯片 39: Polymorphism 多态
	幻灯片 40: Polymorphism 多态
	幻灯片 41: Compile-time
	幻灯片 42: Run-time
	幻灯片 43: Compile-time vs Runtime
	幻灯片 44: The Cosmic SuperClass Object
	幻灯片 45: Object variables
	幻灯片 46: Recall: comparing objects
	幻灯片 47: The equals method
	幻灯片 48: equals method
	幻灯片 49: An Implementation of Point
	幻灯片 50: Main

