
AP-CSA
Data structure and

algorithms

YING HUANG

D.2022

Data structure and
algorithms

• A data structure is a named location that can

be used to store and organize data.

• An algorithm is a collection of steps to solve a

particular problem.

Program = Data Structure + Algorithm

Data structure and
algorithms

Example 1

How to find the index of the target number in the array?

Target number is 42

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

Data Structure: Array, target value

Algorithms: methods to find the index

Algorithms

An algorithm is like a function

Algorithms

What makes a “good” algorithm?

• Correct (input and output)

• Efficient (processing)

• Readable/ Clear

• Why should we learn algorithms?

Algorithms is the Soul of Programming.

Data structure and
algorithms

In AP-CSA

• Searching

✓Sequential/Linear search

✓Binary search

• Sorting

✓Bubble Sort

✓Selection Sort

✓Insertion Sort

✓Merge Sort (optional)

S E A R C H I N G

SEARCHING

We can use traversals to search for

individual elements in an Array/ ArrayList.

–Sequential Search/ Linear Search

–Binary Search

SEQUENTIAL SEARCH

• Sequential Search/ Linear Search checks each

element in order until the target value or the end

of the array/list is reached.

• Sequential search is the only method that can

be used to find a value in unsorted data.

• Time Complexities: T = O(n)

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

i

SEQUENTIAL SEARCH

Implement sequential search using arrays/list which

returns the index of the target or -1 if it is not found.

Algorithms :

Step1: Traverse through every value in array using loop

Step 2: Get value at index

Step 3: Check if target is value

Step 4: return index of value

Step 5: If element is not in Array, return -1

SEQUENTIAL SEARCH

Code

SEQUENTIAL SEARCH

Pros and Cons of Sequential Search:

– Sequential Search is fairly easy to implement and

understand.

– As the size of the data increase, however, the longer Linear

Search takes to complete.

SEQUENTIAL SEARCH

Example 1:

Which will cause the longest execution of a sequential

search looking for a value in an array of integers?

A. The value is the first one in the array

B. The value is in the middle of the array

C. The value is the last one in the array

D. The value isn't in the array

shortest

BINARY SEARCH

• Binary Search can only be used if the data is sorted.

• Binary Search compares a target value to the value in the

middle of a range of indices. If the value isn’t found it looks

again in either the left or right half of the current range.

• Each time through the loop it eliminates half the values in

the search area until either the value is found or there is no

more data to look at.

• Time complexity: T = O(Log n).

BINARY SEARCH

Searching the array below for the value 42:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

left mid right

BINARY SEARCH

Algorithms:

Step 1: Set left to 0 and right to length -1

Step 2: Compare left and right (left <= right) by while loop

Step 3: Set mid = (left+right)/2

Step 4: If the target > midValue -> left = mid + 1

Step 5: If the target < midValue -> right = mid -1

Step 6: If the target = midValue -> return mid

Step 7: can not find, return -1 outside of while.

BINARY SEARCH

Code:

BINARY SEARCH
Example 2:

Which will cause the shortest execution of a binary search

looking for a value in an array of integers?

A. The value is the first one in the array

B. The value is in the middle of the array

C. The value is the last one in the array

D. The value isn't in the array

BINARY SEARCH
Example 3:

Which of the following conditions must be true in order to

search for a value using binary search?

I. The values in the array must be integers.

II. The values in the array must be in sorted order.

III. The array must not contain duplicate values.

A. I only

B. I and II

C. II only

D. II and III

BINARY SEARCH
Example 4:

How many times would the while loop execute if you first do

int[] arr = {2, 10, 23, 31, 55, 86} and then call

binarySearch(arr,55)?

A. 2

B. 1

C. 3

HOMEWORK 7.4.8

correctlyFormatted

• This method returns true if all of the data

in the list is formatted correctly.

• Correctly formatted names are made up of

a first name and a last name, separated by a

single space.

• Both the first and last names should start

with an uppercase letter.

HOMEWORK 7.4.8

HOMEWORK 7.4.8

HOMEWORK 7.4.8

HOMEWORK 7.4.8

HOMEWORK 7.4.8

S O R T I N G

SORTING
When data is disorganized, it can be hard to find values easily:

Organizing, or sorting data, can make it easier to search through:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value 22 18 12 -4 27 30 36 50 7 68 91 56 2 85 42 98 25

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 12 18 22 25 27 30 36 42 50 56 68 85 91 98

SORTING
• sorting: Rearranging the values in an array or collection into

a specific order (usually into their "natural ordering").

– one of the fundamental problems in computer science

– can be solved in many ways:

• there are many sorting algorithms

• some are faster/slower than others

• some use more/less memory than others

• some work better with specific kinds of data

• some can utilize multiple computers / processors, ...

– comparison-based sorting : determining order by

comparing pairs of elements:

• <, >, compareTo, …

SORTING ALGORITHMS

SORTING ALGORITHMS
There are many sorting algorithms.

Wikipedia lists over 40 sorting algorithms. The following three sorting

algorithm will be on the AP exam.

– selection sort: look for the smallest element, swap with first

element. Look for the second smallest, swap with second element,

etc…

– insertion sort: build an increasingly large sorted front portion of

array.

– merge sort: recursively divide the array in half and sort it. Merge

sort will be discussed in Unit 10.

SELECTION SORT
Selection Sort: Sorts an array by repeatedly finding the

minimum value, and moving it to the front of the array.

Index 0 1 2 3 4 5 6

value 22 31 -4 12 23 9 15

Index 0 1 2 3 4 5 6

value -4 31 22 12 23 9 15

Index 0 1 2 3 4 5 6

value -4 9 22 12 23 31 15

Index 0 1 2 3 4 5 6

value -4 9 12 22 23 31 15

Index 0 1 2 3 4 5 6

value -4 9 12 15 23 31 22

SELECTION SORT

How can we implement this?

Index 0 1 2 3 4 5 6

value -4 9 12 15 22 31 23

Index 0 1 2 3 4 5 6

value -4 9 12 15 22 23 31

SORTING ALGORITHMS

SELECTION SORT
Algorithms – Pseudo code

1. Traverse each index up to the second to last element;

2. Find the minimum in the rest of the list;

① Set current index to minimum

② Traverse from current index to end of list

③ If statement to determine which is minimum

3. Swap the index and minIndex

① Create temporary variable to store current index value

② Make current index value the minIndex value

③ Make minIndex value the temporary variable value

SELECTION SORT
Code:

CLASS WORK
What are errors for these code?

CLASS WORK
What are errors for these code?

INSERTION SORT
Insertion sort sorts an array by sorting

each element compared to the elements

already sorted to their left.

Index 0 1 2 3 4

value 22 31 -4 12 23

Index 0 1 2 3 4

value 22 31 -4 12 23

Index 0 1 2 3 4

value 22 -4 31 12 23

Index 0 1 2 3 4

value -4 22 31 12 23

Index 0 1 2 3 4

value -4 22 12 31 23

Index 0 1 2 3 4

value -4 12 22 23 31

Index 0 1 2 3 4

value -4 12 22 31 23

INSERTION SORT
How can we implement this?

Algorithms – Pseudo code

1. Traverse each element starting from index 1

2. Traverse sorted elements to find current element position

① Set current value = list[index];

② Set leftIndex;

③ Use while-loop to determine that current value is less than the left

numbers and set inbounds;

3. Shift sorted elements to place current element.

1. Shift the value at the leftIndex to the right one place (in while- loop)

2. Put the current value in the proper location (outside while-loop)

INSERTION SORT
Code:

INSERTION SORT
Code for ArrayList:

B I G O
T I M E
C O M P L E X I T Y

Question:

When resolving a computer-related problem,

there will frequently be more than just one

solution.

How will we compare these solution/ logic/

algorithms?

THE COMPLEXITY OF AN
ALGORITHM

The complexity of an algorithm is the amount of resources

(elementary operations or loop iterations) required for

running it.

(lower the complexity = faster algorithm)

• Time Complexity (Big O notation)

• Space Complexity

BIG 0 TIME COMPLEXITY

• Big O Notation is a way to represent how long an algorithm will take to

execute.

• Big O is the relationship runtime complexity of algorithms with the size

of input data.

• Big O notation: T = O(g(n))

➢ T represents the computing time of some algorithms.

➢ g(n) represents a known standard function.

➢ n represents the size of input data

BIG O - O(1)

• O(1): Constant time complexity will always take same

amount of time to be executed.

• Example:

BIG O - O(n)

O(n) - Linear time complexity

An algorithm has a linear time complexity if the time to

execute the algorithm is directly proportional to the

input size n.

Example: (sequential Search)

BIG O - O(𝐧𝟐)

O(𝑛2) - Quadratic time complexity

An algorithm has quadratic time complexity if the time

to execution it is proportional to the square of the

input size.

Example:

(selection Sort)

BIG O - O(𝐥𝐨𝐠𝐧)
O(𝑛2) - Quadratic time complexity

An algorithm has logarithmic time complexity if the time

it takes to run the algorithm is proportional to the

logarithm of the input size n.

Example: (binary searching)

HOW ABOUT O(n × 𝑙𝑜𝑔𝑛)

BIG O
• Some of the lists of common computing times of algorithms in order

of performance are as follows:

lower the complexity = faster algorithm

COMPLEXITY OF ALGORITHMS

Algorithm
Time Complexity

Best Average Worst

Sequential Search O(1) O(n) O(n)

Binary Search O(1) O(logn) O(logn)

Selection Search O(n2) O(n2) O(n2)

Insertion Search O(n) O(n2) O(n2)

COMPLEXITY OF ALGORITHMS
Insertion and Selection Sort efficiency depends on how

sorted the list order is at the start of the sort.

– Ascending order/ almost sorted:

Insertion Sort has a lower execution count than

Selection Sort, because the while – loop doesn’t

execute.

– Reverse order(Worst Case):

Selection Sort has a lower execution count because it

only needs swap two values, while Insertion Sort has

to shift every single value.

COMPLEXITY OF ALGORITHMS

Example 5:

How many times as a function of n does the computation
x++ executed?

int x = 0;

for(int i = 0; i < n; i++){

x++;

}

Answer: n(linear function of n)

COMPLEXITY OF ALGORITHMS

Example 6:

How many times as a function of n does the computation
x++ executed?

int x = 0;

for(int i = 0; i < n; i++){

x++;

}

for(int j = 0; j < n; j++){

x++;

}

Answer: 2n

COMPLEXITY OF ALGORITHMS

Example 7:

How many times as a function of n does the computation
x++ executed?

int x = 0;

for(int i = 0; i < n; i++){

for(int j = 0; j < n; j++){

x++;

}

}

Answer: n^2

COMPLEXITY OF ALGORITHMS

Example 8:

How many times as a function of n does the computation
x++ executed?

int x = 1;

while((int)(Math.pow(2, x)) <= n){

x++;

}

Answer:𝑙𝑜𝑔2
𝑛

SEARCHING AND SORTING
Example 9:

Consider the binarySearch method below. How many times would the while

loop execute if you first do int[] arr = {2, 10, 23, 31, 55, 86} and then call

binarySearch(arr,2)?

A. 1

B. 2

C. 3

ANS: B

SEARCHING AND SORTING

Example 10:

Under what condition will an ascending insertion sort

execute the slowest?

A. If the data is already sorted in ascending order

B. If the data is already sorted in descending order

C. It will always take the same amount of time to execute

ANS: B

SEARCHING AND SORTING

Example 11:

Which of the following correctly shows the iterations of an

ascending (from left to right) insertion sort on an array with

the following elements: {7,3,8,5,2}?

A. {3,7,8,5,2}, {3,7,8,5,2}, {3,5,7,8,2}, {2,3,5,7,8}
B. {2,3,8,5,7}, {2,3,8,5,7}, {2,3,5,8,7}, {2,3,5,7,8}
C. {3,7,8,5,2}, {3,5,7,8,2}, {2,3,5,7,8}
D. {2,3,8,5,7}, {2,3,5,8,7}, {2,3,5,7,8}
E. {2,7,3,8,5}, {2,3,7,8,5}, {2,3,5,7,8}

ANS: A

SEARCHING AND SORTING

Example 12:

What would test return if a = {1,2,3,4} and v = 3?

A. 0

B. 1

C. 2

D. The code will not compile

ANS: D

SEARCHING AND SORTING

Example 13:

What is printed when the following main method is

executed?

ANS:

2

SEARCHING AND SORTING

Example 14:

What is printed when the following main method is

executed?

ANS:

4,7,7,3,8,1

SEARCHING AND SORTING
Example 15:

What is printed when the following main method is

executed?

ANS:

2,3,5,9,3,4

SEARCHING AND SORTING

Example 16:

What does the names array store?

ANS:

John Dominic Anna Roger Bob Billy

	幻灯片 1: AP-CSA Data structure and algorithms
	幻灯片 2: Data structure and algorithms
	幻灯片 3: Data structure and algorithms
	幻灯片 4: Algorithms
	幻灯片 5: Algorithms
	幻灯片 6: Data structure and algorithms
	幻灯片 7: Searching
	幻灯片 8: Searching
	幻灯片 9: Sequential search
	幻灯片 10: Sequential search
	幻灯片 11: Sequential search
	幻灯片 12: Sequential search
	幻灯片 13: Sequential search
	幻灯片 14: Binary search
	幻灯片 15: Binary search
	幻灯片 16: Binary search
	幻灯片 17: Binary search
	幻灯片 18: Binary search
	幻灯片 19: Binary search
	幻灯片 20: Binary search
	幻灯片 22: Homework 7.4.8
	幻灯片 23: Homework 7.4.8
	幻灯片 24: Homework 7.4.8
	幻灯片 25: Homework 7.4.8
	幻灯片 26: Homework 7.4.8
	幻灯片 27: Homework 7.4.8
	幻灯片 28: Sorting
	幻灯片 29: Sorting
	幻灯片 30: Sorting
	幻灯片 31: Sorting algorithms
	幻灯片 32: Sorting algorithms
	幻灯片 33: Selection sort
	幻灯片 34: Selection sort
	幻灯片 35: Sorting algorithms
	幻灯片 36: Selection sort
	幻灯片 37: Selection sort
	幻灯片 38: Class work
	幻灯片 39: Class work
	幻灯片 41: Insertion Sort
	幻灯片 42
	幻灯片 43: Insertion Sort
	幻灯片 44: Insertion Sort
	幻灯片 45: Insertion Sort
	幻灯片 46: Big O Time complexity
	幻灯片 47
	幻灯片 48: The Complexity of An Algorithm
	幻灯片 49: Big 0 time complexity
	幻灯片 50: Big O - O(1)
	幻灯片 51: Big O - O(n)
	幻灯片 52: Big O - O(粗体 n ...次方 粗体 2)
	幻灯片 53: Big O - O(上标 基线 , 粗体 l 粗体 o 粗体 g , 结束 基线 , ...次方 粗体 n)
	幻灯片 54: How about O(n× 上标 基线 , l o g , 结束 基线 , ...次方 n)
	幻灯片 55: Big O
	幻灯片 56: Complexity of Algorithms
	幻灯片 57: Complexity of Algorithms
	幻灯片 58: Complexity of Algorithms
	幻灯片 59: Complexity of Algorithms
	幻灯片 60: Complexity of Algorithms
	幻灯片 61: Complexity of Algorithms
	幻灯片 62: Searching and Sorting
	幻灯片 63: Searching and Sorting
	幻灯片 64: Searching and Sorting
	幻灯片 65: Searching and Sorting
	幻灯片 66: Searching and Sorting
	幻灯片 67: Searching and Sorting
	幻灯片 68: Searching and Sorting
	幻灯片 69: Searching and Sorting

