
AP-CSA
Writing a class

YING HUANG

NOV.2022

REVIEW

A N AT O M Y O F
C L A S S

ANATOMY OF CLASS
In Unit 2, we learned to use classes and objects that are built-in in

Java(String, Math) or written by other programmers. In this unit, you will

learn to write your own classes and objects!

Remember that a class in programming defines a new abstract data

type. When you create objects, you create new variables

or instances of that class data type.

CLASS DECLARATION

• To write your own class, you typically start a class

declaration with public then class then the name of the

class. The body of the class is defined inside the curly

braces {}.

• Syntax:

public class ClassName {

// define class here - a blueprint

}

INSTANCE
ATTRIBUTES/METHODS
• Remember that objects have attributes and behaviors. These

correspond to instance variables/ attributes and methods in the

class definition.

• Attributes hold the data for objects whereas the methods code the

behaviors or the actions that can manipulate the data of the object.

• A class also has constructors which initialize the instance variables

when the object is created.

EXAMPLE

public class Point {

int x;

int y;

public Point(int newX, int newY){

x = newX;

y = newY;

}

}

declare instance

variables/ attribute

constructor: initialize

variables

CONSTRUCTOR 构造函数

The constructor of a class is a method that

allows us to initialize the attributes(variables) of

an object when it is first created.

Syntax:

public className(…)

{

….

}

The name of constructor is

same as class's name!

OVERLOADED CONSTRUCTORS

Constructors are said to be overloaded when

there are multiple constructors with the same

name but a different signature.

public house()

{

….

}

public house(String color)

{

….

}

no parameter one parameter

A parameter is a variable used to define a

particular value during a function definition.

OVERLOADED CONSTRUCTORS

We can call different constructors to

initialize our objects.

house h1 = new house();

// default constructor initializes

house h2 = new house(“Red”);

// h2.color = red

house h3 = new house(“Red”,”Ying”,111);

// h3.color = Red, h3.owner =Ying h3.ID =111

METHOD DECLARATIONS

Method define the behaviors or functions

for objects.

public int sum(int num1, int num2)

Access

specifier

Return

Type

Method

Name

Parameter List

ACCESS SPECIFIER

Access specifier determine whether classes, data,

constructors and methods can be accessed outside

of the declaring class.

Type of Access:

– public: be accessed from outside the class.

(default)

– private: can only be accessed from inside the

enclosing class.

public and private Access

• class and constructors are designated as public so

that they can be accessed outside of the class file.

• attribute/ instance variable are designated as

private so that they can be more safe

ENCAPSULATION

Object-oriented Programming stresses data

encapsulation where the data (instance variables) and the

code acting on the data (methods) are wrapped together into

a single unit and the implementation details are hidden.

The data is protected from harm by being kept private.

Anything outside the class can only interact with the public

methods and cannot interact directly with the private

instance variables.

EXAMPLE 1
In this exercise, you are going to create the instance variables for an

Employee class. The class needs to store the employee’s first name, last

name, monthly salary, and the number of hours in their shift. You will

need to give each instance variable an appropriate name, type, and

privacy setting.

After defining the instance variables, create the structure for the

constructor. Make sure you set the privacy settings on the constructor

correctly.

ACCESSOR AND MUTATOR
• Accessors/ getters: Methods generally have a return value,

which data type should be match the method signature/

attribute return type

– For example:

public int getAge(){ return age;}

• Mutator/ setter: Methods are often void methods that change

the value of instance and static variables.

– For example:

public void setAge(int newage)

{ age = Newage; }

EXAMPLE 2 – CODEHS
5.5.5 RECTANGLE CLASS
Write your own accessor and mutator method for the

Rectangle class instance variables. You should create the

following methods:

• getHeight

• setHeight

• getWidth

• setWidth

• getArea

• getPerimeter

• toString- The output of a rectangle with width 10 and height 4

method should be:

Rectangle width: 10, Rectangle height: 4

COMMENTS

Adding comments to your code helps to make it more readable and

maintainable.

In the commercial world, software development is usually a team effort

where many programmers will use your code and maintain it for years.

Commenting is essential in this kind of environment and a good habit to

develop. Comments will also help you to remember what you were

doing when you look back to your code a month or a year from now.

COMMENTS
There are 3 types of comments in Java:

1. // Single line comment

2. /* Multiline comment */

3. /** Documentation comment */

We have seen the first two types of comments. The third is also a

special version of the multi-line comment, /** */, called the

documentation comment.

Java has a tool called javadoc that comes with the Java JDK that will

pull out all of these comments to make documentation of a class as a

web page.

PRECONDITIONS/
POSTCONDITIONS

A precondition is a condition that must be true for your method

code to work, for example the assumption that the parameters

have values and are not null. There is no expectation that the

method will check to ensure preconditions are satisfied.

The methods could check for these preconditions, but they do not

have to. The precondition is what the method expects in order to

do its job properly.

A postcondition is a condition that is true after running the

method. It is what the method promises to do. Postconditions

describe the outcome of running the method, for example what is

being returned or the changes to the instance variables.

PRECONDITIONS/
POSTCONDITIONS
/**

* Constructor that takes the x and y position of Sprite object

* Preconditions: parameters x and y are coordinates from 0 to the width and height of the

window

*

* Postconditions: the Sprite object is placed in (x,y) coordinates

* @param x the x position to place the Sprite

* @param y the y position to place the Sprite */

public Sprite(int x, int y) {

center_x = x;

center_y = y;

}

CLASS/HOME WORK
Code HS:

5.2.5 – 5.2.8

5.4.5 – 5.4.8

5.5.5 -5.5.7

S TAT I C
V S
N O N - S TAT I C

STATIC VS NON-STATIC

• Variables and methods can be classified as static or

nonstatic(instance).

• Non-static or instance: Part of an object, Non-static

methods are called using the dot operator along with the

object variable name.

• static: Part of a class. Not copied into each object; shared by

all objects of that class. Static methods are called using the dot

operator along with the class name unless they are defined in

the enclosing class.

STATIC METHODS

• Static Methods are the methods in Java that can be called

without creating an object of a class. They are referenced by

the class name itself.

➢Stored in a class, not in an object.

➢Shared by all objects of the class, not replicated.

• Syntax

public static type name(parameters) {

statements;

}

ERROR

Because static methods

belong to the class, and

not an object, they

cannot access instance

variables or non-static

methods of the class.

STATIC VARIABLES

static variable: Stored in the class instead of each

object.

A "shared" global field that all objects can access and modify.

Like a class constant, except that its value can be changed.

FINAL STATIC FIELDS

• Final static variable:

– A class constant whose value cannot be changed. Usually public.

– ALL CAPS by convention.

• Syntax

public static final type name;

or,

public static final type name = value;

• For example:

public static final int NUMOFMONTHS = 12;

Swapping values 1.0

What is wrong with this code? What is its output?

Swapping values 2.0

What is wrong with this code? What is its output?

S E M A N T I C S

VALUE SEMANTICS

value semantics: Behavior where values are copied when

assigned, passed as parameters, or returned.

– All primitive types in Java use value semantics.

– When one variable is assigned to another, its value is copied.

– Modifying the value of one variable does not affect others.

REFERENCE SEMANTICS
(OBJECTS)

• reference semantics: Behavior where variables actually store the

address of an object in memory.

– When one variable is assigned to another, the object is

not copied; both variables refer to the same object(aliases).

– Modifying the value of one variable will affect others.

PRIMITIVE AS PARAMETERS
• The primitive types int, double, boolean all use value semantics.

• When an actual parameter is a primitive value, the formal

parameter is initialized with a copy of that value. Changes to the

formal parameter have no effect on the corresponding actual

parameter.

• For example:

OBJECT AS PARAMETERS
• When an actual parameter is a reference to an object, the formal

parameter is initialized with that refers to the same object.

– efficiency. Copying large objects slows down a program.

– sharing. It's useful to share an object's data among methods.

– Except String

• For example

STRING AS PARAMETERS

String uses value semantics like primitive types. It's the only object class

that uses value sematic.

Example:

public static void repeat(String str) {

str = str + str;

}

public static void main(String[] args) {

String str = “hi”;

repeat(str);

System.out.println(str);

}

CLASS/HOME WORK
Code HS:

5.6.5 - 5.6.7

5.7.5 -5.7.7

WHAT IS THE ERROR?

outside scope

S C O P E
A N D A C C E S S

SCOPE
• In general, a variable exists from the point

where it is declared, until the end of the block

it is declared inside of.

• Variable can be only used in the block.

• A block to code enclosed in curly braces:

{

// code

}

LOCAL VARIABLES

Local variables only exist in the context of the

method or constructor they are created in.

– Local variables cannot be declared as public or

private

– For example

EXAMPLE

WHAT IS THE OUTPUT?

The local variable number has more

specific scope than the instance variable

number!

NAMING CONFLICTS

If two variables have the same name inside of the

same scope:

• The variable with the more specific scope takes

precedence.

• The variable with the more general scope no

longer exists in that location.

This is called shadowing

WHAT IS THE OUTPUT?

The formal parameter number will take

precedence over then instance variable.

SCOPE IMPLICATIONS

• The error is overlapping scope

• A variable can't be declared twice or

used out of its scope.

SCOPE IMPLICATIONS

Variables without overlapping scope can

have same name.

“this”
K E Y W O R D

this Keyword

Within a non-static method or a constructor, the

keyword this is a reference to the current object

whose methods or constructors are being called.

Syntax:

Refer to a field: this.field

Call a method: this.method(parameters);

In constructor this.variableName;

this Keyword

Example:

this Keyword

• this can also be used to call an object’s methods

this Keyword

• this can also be used as an actual parameter to

pass the current object to a method

CLASS/HOME WORK
Code HS:

5.8.7 - 5.8.9

5.9.5 – 5.9.7

